博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
linux网络流程分析(一)---网卡驱动
阅读量:4588 次
发布时间:2019-06-09

本文共 19766 字,大约阅读时间需要 65 分钟。

分析linux网络的书已经很多了,包括《追踪Linux TCP/IP代码运行》《》,这里我只是从数据包在linux内核中的基本流程来分析,尽可能的展现一个主流程框架。

内核如何从网卡接收数据,传统的过程:

1.数据到达网卡;
2.网卡产生一个中断给内核;
3.内核使用I/O指令,从网卡I/O区域中去读取数据;

 
我们在许多网卡驱动中(很老那些),都可以在网卡的中断函数中见到这一过程。
 
但是,这一种方法,有一种重要的问题,就是大流量的数据来到,网卡会产生大量的中断,内核在中断上下文 中,会浪费大量的资源来处理中断本身。所以,就有一个问题,“可不可以不使用中断”,这就是轮询技术,所谓NAPI技术,说来也不神秘,就是说,内核屏蔽 中断,然后隔一会儿就去问网卡,“你有没有数据啊?”……
 
从这个描述本身可以看到,如果数据量少,轮询同样占用大量的不必要的CPU资源,大家各有所长吧
 
OK,另一个问题,就是从网卡的I/O区域,包括I/O寄存器或I/O内存中去读取数据,这都要CPU 去读,也要占用CPU资源,“CPU从I/O区域读,然后把它放到内存(这个内存指的是系统本身的物理内存,跟外设的内存不相干,也叫主内存)中”。于是 自然地,就想到了DMA技术——让网卡直接从主内存之间读写它们的I/O数据,CPU,这儿不干你事,自己找乐子去:
1.首先,内核在主内存中为收发数据建立一个环形的缓冲队列(通常叫DMA环形缓冲区)。
2.内核将这个缓冲区通过DMA映射,把这个队列交给网卡;
3.网卡收到数据,就直接放进这个环形缓冲区了——也就是直接放进主内存了;然后,向系统产生一个中断;
4.内核收到这个中断,就取消DMA映射,这样,内核就直接从主内存中读取数据;
 
——呵呵,这一个过程比传统的过程少了不少工作,因为设备直接把数据放进了主内存,不需要CPU的干预,效率是不是提高不少?
 
对应以上4步,来看它的具体实现:
1)分配环形DMA缓冲区
Linux内核中,用skb来描述一个缓存,所谓分配,就是建立一定数量的skb,然后用e1000_rx_ring 环形缓冲区队列描述符连接起来
2)建立DMA映射
内核通过调用
dma_map_single(struct device *dev,void *buffer,size_t size,enum dma_data_direction direction)
建立映射关系。
struct device *dev 描述一个设备;
buffer:把哪个地址映射给设备;也就是某一个skb——要映射全部,当然是做一个双向链表的循环即可;
size:缓存大小;
direction:映射方向——谁传给谁:一般来说,是“双向”映射,数据在设备和内存之间双向流动;
对于PCI设备而言(网卡一般是PCI的),通过另一个包裹函数pci_map_single,这样,就把buffer交给设备了!设备可以直接从里边读/取数据。
3)这一步由硬件完成;
4)取消映射
dma_unmap_single,对PCI而言,大多调用它的包裹函数pci_unmap_single,不取消的话,缓存控制权还在设备手里,要调用 它,把主动权掌握在CPU手里——因为我们已经接收到数据了,应该由CPU把数据交给上层网络栈;当然,不取消之前,通常要读一些状态位信息,诸如此类, 一般是调用dma_sync_single_for_cpu()让CPU在取消映射前,就可以访问DMA缓冲区中的内容

首先,数据包从网卡光电信号来之后,先经过网卡驱动,转换成skb,进入链路层,那么我首先就先分析一下网卡驱动的流程。

源码位置:Driver/net/E1000e文件夹下面。

static int __init e1000_init_module(void){注册网卡驱动,按照PCI驱动开发方式来进行注册	int ret;	printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",	       e1000e_driver_name, e1000e_driver_version);	printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",	       e1000e_driver_name);	ret = pci_register_driver(&e1000_driver);	pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,			       PM_QOS_DEFAULT_VALUE);					return ret;}

  然后看一下驱动结构体内容,这里不对PCI类型驱动开发做介绍了。

/* PCI Device API Driver */static struct pci_driver e1000_driver = {	.name     = e1000e_driver_name,	.id_table = e1000_pci_tbl,	.probe    = e1000_probe,	.remove   = __devexit_p(e1000_remove),#ifdef CONFIG_PM	/* Power Management Hooks */	.suspend  = e1000_suspend,	.resume   = e1000_resume,#endif	.shutdown = e1000_shutdown,	.err_handler = &e1000_err_handler};

  这里面最重要的函数是e1000_probe,先看一下这个函数的作用是什么:“Device Initialization Routine”,这个应该不难理解。

static int __devinit e1000_probe(struct pci_dev *pdev,				 const struct pci_device_id *ent){	struct net_device *netdev;	struct e1000_adapter *adapter;	struct e1000_hw *hw;	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];	resource_size_t mmio_start, mmio_len;	resource_size_t flash_start, flash_len;	static int cards_found;	int i, err, pci_using_dac;	u16 eeprom_data = 0;	u16 eeprom_apme_mask = E1000_EEPROM_APME;	e1000e_disable_l1aspm(pdev);从这里开始对设备驱动进行初始化,包括名称、内存之类的。	err = pci_enable_device_mem(pdev);	if (err)		return err;	pci_using_dac = 0;	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));	if (!err) {		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));		if (!err)			pci_using_dac = 1;	} else {		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));		if (err) {			err = pci_set_consistent_dma_mask(pdev,							  DMA_BIT_MASK(32));			if (err) {				dev_err(&pdev->dev, "No usable DMA "					"configuration, aborting\n");				goto err_dma;			}		}	}	err = pci_request_selected_regions_exclusive(pdev,	                                  pci_select_bars(pdev, IORESOURCE_MEM),	                                  e1000e_driver_name);	if (err)		goto err_pci_reg;	/* AER (Advanced Error Reporting) hooks */	err = pci_enable_pcie_error_reporting(pdev);	if (err) {		dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "		        "0x%x\n", err);		/* non-fatal, continue */	}	pci_set_master(pdev);	/* PCI config space info */	err = pci_save_state(pdev);	if (err)		goto err_alloc_etherdev;	err = -ENOMEM; 这里要为驱动分配一个容器之类的,因为驱动后面的一切操作都是在它的基础之上。	netdev = alloc_etherdev(sizeof(struct e1000_adapter));	if (!netdev)		goto err_alloc_etherdev;	SET_NETDEV_DEV(netdev, &pdev->dev);	pci_set_drvdata(pdev, netdev);	adapter = netdev_priv(netdev);	hw = &adapter->hw;	adapter->netdev = netdev;	adapter->pdev = pdev;	adapter->ei = ei;	adapter->pba = ei->pba;	adapter->flags = ei->flags;	adapter->flags2 = ei->flags2;	adapter->hw.adapter = adapter;	adapter->hw.mac.type = ei->mac;	adapter->max_hw_frame_size = ei->max_hw_frame_size;	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;0表示设备映射的内存的的bar	mmio_start = pci_resource_start(pdev, 0);	mmio_len = pci_resource_len(pdev, 0);	err = -EIO; 这里我的理解是容器的硬件地址与bar进行映射,hw_addr代表的是网卡的硬件地址	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);	if (!adapter->hw.hw_addr)		goto err_ioremap;	if ((adapter->flags & FLAG_HAS_FLASH) &&	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {		flash_start = pci_resource_start(pdev, 1);		flash_len = pci_resource_len(pdev, 1);		adapter->hw.flash_address = ioremap(flash_start, flash_len);		if (!adapter->hw.flash_address)			goto err_flashmap;	}	/* construct the net_device struct */	netdev->netdev_ops		= &e1000e_netdev_ops;	e1000e_set_ethtool_ops(netdev);	netdev->watchdog_timeo		= 5 * HZ;	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);	netdev->mem_start = mmio_start;	netdev->mem_end = mmio_start + mmio_len;	adapter->bd_number = cards_found++;	e1000e_check_options(adapter);	/* setup adapter struct */	err = e1000_sw_init(adapter);	if (err)		goto err_sw_init;	err = -EIO;	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));	err = ei->get_variants(adapter);	if (err)		goto err_hw_init;	if ((adapter->flags & FLAG_IS_ICH) &&	    (adapter->flags & FLAG_READ_ONLY_NVM))		e1000e_write_protect_nvm_ich8lan(&adapter->hw);	hw->mac.ops.get_bus_info(&adapter->hw);	adapter->hw.phy.autoneg_wait_to_complete = 0;	/* Copper options */	if (adapter->hw.phy.media_type == e1000_media_type_copper) {		adapter->hw.phy.mdix = AUTO_ALL_MODES;		adapter->hw.phy.disable_polarity_correction = 0;		adapter->hw.phy.ms_type = e1000_ms_hw_default;	}	if (e1000_check_reset_block(&adapter->hw))		e_info("PHY reset is blocked due to SOL/IDER session.\n");	netdev->features = NETIF_F_SG |			   NETIF_F_HW_CSUM |			   NETIF_F_HW_VLAN_TX |			   NETIF_F_HW_VLAN_RX;	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)		netdev->features |= NETIF_F_HW_VLAN_FILTER;	netdev->features |= NETIF_F_TSO;	netdev->features |= NETIF_F_TSO6;	netdev->vlan_features |= NETIF_F_TSO;	netdev->vlan_features |= NETIF_F_TSO6;	netdev->vlan_features |= NETIF_F_HW_CSUM;	netdev->vlan_features |= NETIF_F_SG;	if (pci_using_dac)		netdev->features |= NETIF_F_HIGHDMA;	if (e1000e_enable_mng_pass_thru(&adapter->hw))		adapter->flags |= FLAG_MNG_PT_ENABLED;	/*	 * before reading the NVM, reset the controller to	 * put the device in a known good starting state	 */	adapter->hw.mac.ops.reset_hw(&adapter->hw);	/*	 * systems with ASPM and others may see the checksum fail on the first	 * attempt. Let's give it a few tries	 */	for (i = 0;; i++) {		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)			break;		if (i == 2) {			e_err("The NVM Checksum Is Not Valid\n");			err = -EIO;			goto err_eeprom;		}	}	e1000_eeprom_checks(adapter);	/* copy the MAC address out of the NVM */	if (e1000e_read_mac_addr(&adapter->hw))		e_err("NVM Read Error while reading MAC address\n");	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);	if (!is_valid_ether_addr(netdev->perm_addr)) {		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);		err = -EIO;		goto err_eeprom;	}	init_timer(&adapter->watchdog_timer);	adapter->watchdog_timer.function = &e1000_watchdog;	adapter->watchdog_timer.data = (unsigned long) adapter;	init_timer(&adapter->phy_info_timer);	adapter->phy_info_timer.function = &e1000_update_phy_info;	adapter->phy_info_timer.data = (unsigned long) adapter;	INIT_WORK(&adapter->reset_task, e1000_reset_task);	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);	/* Initialize link parameters. User can change them with ethtool */	adapter->hw.mac.autoneg = 1;	adapter->fc_autoneg = 1;	adapter->hw.fc.requested_mode = e1000_fc_default;	adapter->hw.fc.current_mode = e1000_fc_default;	adapter->hw.phy.autoneg_advertised = 0x2f;这里是默认的接收环和发送环大小是256,其实一次中断,能接受的数据不会有太高,我做实验的时候也就是1个2个。这里的环不是一直存放skb_buff,而是DMA一次中断后能给内核的数据存放地,当中断结束后,skb_buff会被转移的。	/* ring size defaults */	adapter->rx_ring->count = 256;	adapter->tx_ring->count = 256;	/*	 * Initial Wake on LAN setting - If APM wake is enabled in	 * the EEPROM, enable the ACPI Magic Packet filter	 */	if (adapter->flags & FLAG_APME_IN_WUC) {		/* APME bit in EEPROM is mapped to WUC.APME */		eeprom_data = er32(WUC);		eeprom_apme_mask = E1000_WUC_APME;		if (eeprom_data & E1000_WUC_PHY_WAKE)			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&		    (adapter->hw.bus.func == 1))			e1000_read_nvm(&adapter->hw,				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);		else			e1000_read_nvm(&adapter->hw,				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);	}	/* fetch WoL from EEPROM */	if (eeprom_data & eeprom_apme_mask)		adapter->eeprom_wol |= E1000_WUFC_MAG;	/*	 * now that we have the eeprom settings, apply the special cases	 * where the eeprom may be wrong or the board simply won't support	 * wake on lan on a particular port	 */	if (!(adapter->flags & FLAG_HAS_WOL))		adapter->eeprom_wol = 0;	/* initialize the wol settings based on the eeprom settings */	adapter->wol = adapter->eeprom_wol;	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);	/* save off EEPROM version number */	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);	/* reset the hardware with the new settings */	e1000e_reset(adapter);	/*	 * If the controller has AMT, do not set DRV_LOAD until the interface	 * is up.  For all other cases, let the f/w know that the h/w is now	 * under the control of the driver.	 */	if (!(adapter->flags & FLAG_HAS_AMT))		e1000_get_hw_control(adapter);	strcpy(netdev->name, "eth%d"); 注册网卡驱动	err = register_netdev(netdev);	if (err)		goto err_register;	/* carrier off reporting is important to ethtool even BEFORE open */	netif_carrier_off(netdev);	e1000_print_device_info(adapter);	return 0;err_register:	if (!(adapter->flags & FLAG_HAS_AMT))		e1000_release_hw_control(adapter);err_eeprom:	if (!e1000_check_reset_block(&adapter->hw))		e1000_phy_hw_reset(&adapter->hw);err_hw_init:	kfree(adapter->tx_ring);	kfree(adapter->rx_ring);err_sw_init:	if (adapter->hw.flash_address)		iounmap(adapter->hw.flash_address);	e1000e_reset_interrupt_capability(adapter);err_flashmap:	iounmap(adapter->hw.hw_addr);err_ioremap:	free_netdev(netdev);err_alloc_etherdev:	pci_release_selected_regions(pdev,	                             pci_select_bars(pdev, IORESOURCE_MEM));err_pci_reg:err_dma:	pci_disable_device(pdev);	return err;}

  通过上面的函数,我们完成了驱动的初始化和设备注册工作。下面是网卡设备注册的操作函数

static const struct net_device_ops e1000e_netdev_ops = {	.ndo_open		= e1000_open,	.ndo_stop		= e1000_close,	.ndo_start_xmit		= e1000_xmit_frame,	.ndo_get_stats		= e1000_get_stats,	.ndo_set_multicast_list	= e1000_set_multi,	.ndo_set_mac_address	= e1000_set_mac,	.ndo_change_mtu		= e1000_change_mtu,	.ndo_do_ioctl		= e1000_ioctl,	.ndo_tx_timeout		= e1000_tx_timeout,	.ndo_validate_addr	= eth_validate_addr,	.ndo_vlan_rx_register	= e1000_vlan_rx_register,	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,#ifdef CONFIG_NET_POLL_CONTROLLER	.ndo_poll_controller	= e1000_netpoll,#endif};

  这里关注一下最后一个函数

static void e1000_netpoll(struct net_device *netdev){	struct e1000_adapter *adapter = netdev_priv(netdev);	disable_irq(adapter->pdev->irq);这里关闭容器设备中断	e1000_intr(adapter->pdev->irq, netdev); 初始化设备中断	enable_irq(adapter->pdev->irq);}

  这是网卡驱动的中断处理函数,也就是后半段的处理

static irqreturn_t e1000_intr(int irq, void *data){	struct net_device *netdev = data;	struct e1000_adapter *adapter = netdev_priv(netdev);	struct e1000_hw *hw = &adapter->hw;	u32 rctl, icr = er32(ICR);	if (!icr)		return IRQ_NONE;  /* Not our interrupt */	/*	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is	 * not set, then the adapter didn't send an interrupt	 */	if (!(icr & E1000_ICR_INT_ASSERTED))		return IRQ_NONE;	/*	 * Interrupt Auto-Mask...upon reading ICR,	 * interrupts are masked.  No need for the	 * IMC write	 */	if (icr & E1000_ICR_LSC) {		hw->mac.get_link_status = 1;		/*		 * ICH8 workaround-- Call gig speed drop workaround on cable		 * disconnect (LSC) before accessing any PHY registers		 */		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&		    (!(er32(STATUS) & E1000_STATUS_LU)))			schedule_work(&adapter->downshift_task);		/*		 * 80003ES2LAN workaround--		 * For packet buffer work-around on link down event;		 * disable receives here in the ISR and		 * reset adapter in watchdog		 */		if (netif_carrier_ok(netdev) &&		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {			/* disable receives */			rctl = er32(RCTL);			ew32(RCTL, rctl & ~E1000_RCTL_EN);			adapter->flags |= FLAG_RX_RESTART_NOW;		}		/* guard against interrupt when we're going down */		if (!test_bit(__E1000_DOWN, &adapter->state))			mod_timer(&adapter->watchdog_timer, jiffies + 1);	}这里调用了_napi_schedule完成将设备的napi队列挂到CPU	if (napi_schedule_prep(&adapter->napi)) {		adapter->total_tx_bytes = 0;		adapter->total_tx_packets = 0;		adapter->total_rx_bytes = 0;		adapter->total_rx_packets = 0;		__napi_schedule(&adapter->napi);	}	return IRQ_HANDLED;}

  

void __napi_schedule(struct napi_struct *n){	unsigned long flags;	local_irq_save(flags);	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);//adapter里面的队列地址挂到poll.list中	//设置软中断NET_RX_SOFTIRQ,等待调度其中断处理程序	__raise_softirq_irqoff(NET_RX_SOFTIRQ);	local_irq_restore(flags);}

  再看一下如何打开网络设备

static int e1000_open(struct net_device *netdev){	struct e1000_adapter *adapter = netdev_priv(netdev);	struct e1000_hw *hw = &adapter->hw;	int err;	/* disallow open during test */	if (test_bit(__E1000_TESTING, &adapter->state))		return -EBUSY;	netif_carrier_off(netdev);初始化传输和接收描述符,这里主要是对接收环和发送环进行初始化,他们需要256个单元空间	/* allocate transmit descriptors */	err = e1000e_setup_tx_resources(adapter);	if (err)		goto err_setup_tx;	/* allocate receive descriptors */	err = e1000e_setup_rx_resources(adapter);	if (err)		goto err_setup_rx;	e1000e_power_up_phy(adapter);	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;	if ((adapter->hw.mng_cookie.status &	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))		e1000_update_mng_vlan(adapter);	/*	 * If AMT is enabled, let the firmware know that the network	 * interface is now open	 */	if (adapter->flags & FLAG_HAS_AMT)		e1000_get_hw_control(adapter);	/*	 * before we allocate an interrupt, we must be ready to handle it.	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt	 * as soon as we call pci_request_irq, so we have to setup our	 * clean_rx handler before we do so.	 */这个函数比较重要,在这里面完成对容器的配置,包括软中断设置	e1000_configure(adapter);{
static void e1000_configure(struct e1000_adapter *adapter){	e1000_set_multi(adapter->netdev);	e1000_restore_vlan(adapter);	e1000_init_manageability(adapter);	e1000_configure_tx(adapter);配置发送	e1000_setup_rctl(adapter);	e1000_configure_rx(adapter);配置接收	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));}
}	err = e1000_request_irq(adapter);	if (err)		goto err_req_irq;	/*	 * Work around PCIe errata with MSI interrupts causing some chipsets to	 * ignore e1000e MSI messages, which means we need to test our MSI	 * interrupt now	 */	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {		err = e1000_test_msi(adapter);		if (err) {			e_err("Interrupt allocation failed\n");			goto err_req_irq;		}	}	/* From here on the code is the same as e1000e_up() */	clear_bit(__E1000_DOWN, &adapter->state);	napi_enable(&adapter->napi);	e1000_irq_enable(adapter);	netif_start_queue(netdev);	/* fire a link status change interrupt to start the watchdog */	ew32(ICS, E1000_ICS_LSC);	return 0;err_req_irq:	e1000_release_hw_control(adapter);	e1000_power_down_phy(adapter);	e1000e_free_rx_resources(adapter);err_setup_rx:	e1000e_free_tx_resources(adapter);err_setup_tx:	e1000e_reset(adapter);	return err;

  这里看一下接收容器中断设置

static void e1000_configure_rx(struct e1000_adapter *adapter){	struct e1000_hw *hw = &adapter->hw;	struct e1000_ring *rx_ring = adapter->rx_ring;	u64 rdba;	u32 rdlen, rctl, rxcsum, ctrl_ext;	if (adapter->rx_ps_pages) {		/* this is a 32 byte descriptor */		rdlen = rx_ring->count *			sizeof(union e1000_rx_desc_packet_split);		adapter->clean_rx = e1000_clean_rx_irq_ps;		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);		adapter->clean_rx = e1000_clean_jumbo_rx_irq;		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;	} else {		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);		adapter->clean_rx = e1000_clean_rx_irq; 这里的函数是对前半段的一个处理流程,主要是将数据从DMA中获取然后放到队列中,供后半段进行处理。		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;	}	/* disable receives while setting up the descriptors */ //写接收控制寄存器 暂时停止接收	rctl = er32(RCTL);	ew32(RCTL, rctl & ~E1000_RCTL_EN);	e1e_flush();	msleep(10);	/* set the Receive Delay Timer Register *///设置RDTR寄存器 有关	ew32(RDTR, adapter->rx_int_delay);	/* irq moderation */ //设置RADV寄存器 有关RADV具体详见开发者手册  	ew32(RADV, adapter->rx_abs_int_delay);	if (adapter->itr_setting != 0)		ew32(ITR, 1000000000 / (adapter->itr * 256));	ctrl_ext = er32(CTRL_EXT);	/* Reset delay timers after every interrupt */	ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;	/* Auto-Mask interrupts upon ICR access */	ctrl_ext |= E1000_CTRL_EXT_IAME;	ew32(IAM, 0xffffffff);	ew32(CTRL_EXT, ctrl_ext);	e1e_flush();	/*	 * Setup the HW Rx Head and Tail Descriptor Pointers and	 * the Base and Length of the Rx Descriptor Ring	 */	 //与接收描述符环有关的有4个寄存器:RDBA存放描述符缓冲的首地址 做为基地址 供64位 包括各32位的高低地址  //RDLEN:为缓冲区分配的总空间的大小 RDH和RDT是头尾指针 存放相对基址的偏移量 RDH的值由硬件增加 表示指向下一次DMA将用的描述符 //RDT由软件增加 表示下一次要处理并送交协议栈的有关描述符 	rdba = rx_ring->dma;	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));	ew32(RDBAH, (rdba >> 32));	ew32(RDLEN, rdlen);	ew32(RDH, 0);	ew32(RDT, 0);	rx_ring->head = E1000_RDH;	rx_ring->tail = E1000_RDT;	/* Enable Receive Checksum Offload for TCP and UDP */	rxcsum = er32(RXCSUM);	if (adapter->flags & FLAG_RX_CSUM_ENABLED) {		rxcsum |= E1000_RXCSUM_TUOFL;		/*		 * IPv4 payload checksum for UDP fragments must be		 * used in conjunction with packet-split.		 */		if (adapter->rx_ps_pages)			rxcsum |= E1000_RXCSUM_IPPCSE;	} else {		rxcsum &= ~E1000_RXCSUM_TUOFL;		/* no need to clear IPPCSE as it defaults to 0 */	}	ew32(RXCSUM, rxcsum);	/*	 * Enable early receives on supported devices, only takes effect when	 * packet size is equal or larger than the specified value (in 8 byte	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048	 */	if ((adapter->flags & FLAG_HAS_ERT) &&	    (adapter->netdev->mtu > ETH_DATA_LEN)) {		u32 rxdctl = er32(RXDCTL(0));		ew32(RXDCTL(0), rxdctl | 0x3);		ew32(ERT, E1000_ERT_2048 | (1 << 13));		/*		 * With jumbo frames and early-receive enabled, excessive		 * C4->C2 latencies result in dropped transactions.		 */		pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,					  e1000e_driver_name, 55);	} else {		pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,					  e1000e_driver_name,					  PM_QOS_DEFAULT_VALUE);	}	/* Enable Receives */	ew32(RCTL, rctl);}

  

转载于:https://www.cnblogs.com/gogly/archive/2012/06/10/2541573.html

你可能感兴趣的文章
Mysql事务及锁
查看>>
TNS-01251: Cannot set trace/log directory under ADR
查看>>
最后一面《HR面》------十大经典提问
查看>>
一篇文章读懂开源web引擎Crosswalk-《转载》
查看>>
Android代码规范(转)
查看>>
【bzoj1857】传送带——三分套三分
查看>>
layer常用方法代码
查看>>
[转]在SqlServer 中解析JSON数据
查看>>
IIS7.5配置Asp.net项目出现HTTP 错误 404.17 - Not Found 请求的内容似乎是脚本,因而将无法由静态文件处理程序来处理。...
查看>>
64位WIN7+oracle11g+plsql安装
查看>>
错误跳转js
查看>>
暮秋山行
查看>>
I学霸官方免费教程二十四:Java常用类之随机数 Math类和Random类
查看>>
查询登陆时间间隔不超过5分钟的所有记录
查看>>
新东方雅思词汇---7.1、probation
查看>>
laravel基础课程---15、分页及验证码(lavarel分页效果如何实现)
查看>>
前端插件资源
查看>>
js json简介(json的本质也是字符串)(用于服务器和客户端通信)
查看>>
回溯8--跳马问题
查看>>
JavaScript笔记(第一章,第二章)
查看>>